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Abstract-Numerical solutions in boundary-fitted coordinates are presented for the problem of thrce- 
dimensional natural convection in an enclosed vertical rod bundle. The rod bundle is composed of seven 
hot rods placed in an isothermal cold hexagonal enclosure with the rod surfaces heated under uniform 
heat flux conditions. Flow fields and temperature distributions are obtained for Rayleigh numbers up to 
10” and a Prandtl number of 0.7; the aspect ratio of vertical to horizontal dimensions is set at the value 

of unity. The distributions of velocities and isotherms are presented. The effect of natural convection on 
local and average boundary temperatures as well as on heat transfer coefficients is examined. With an 
increase in the Rayleigh number, the rods tend to achieve nearly the same average boundary temperature, 
or consequently the same overall heat transfer coefficient. It is demonstrated that in the boundary-layer 
regime, the Nusselt and Rayleigh numbers can well be correlated with Nu = cRu”~, which coincides with 
that for a vertical rectangular channel. The results are compared with those for an isothermal rod bundle 

to examine the effect of boundary conditions on the flow distribution and heat transfer. 

INTRODUCTION 

THREE-DIMENSIONAL, buoyancy-induced natural con- 
vection in enclosures, or so-called three-dimensional 
buoyant enclosure flow [I], has been receiving con- 
siderable attention due to its potential applications as 
well as practical importance in engineering designs 
and energy related problems. However, most of the 
published studies, e.g. [2-4], only deal with basic 
geometries such as rectangular boxes and cylindrical 
annuli, to which conventional coordinate systems 
such as the Cartesian or polar coordinates can be 
adopted to discretize the governing equations into 
finite-difference ones without much difficulty. The 
abundance of reports on these basic geometries is 
partly due to fundamental importance of the rec- 
tangular or cylindrical enclosure problems and, on the 
other hand, partly because of the geometric com- 
plexity involved in geometries like the present one. 

Natural convection in an enclosed space composed 
of a hot vertical rod bundle placed in a cold enclosure 
has potential applications including the storage of 
heat-generating spent-fuel assemblies, and heat 
removal of a nuclear fuel-pin configuration in a light- 
water reactor in situations of emergency. Keyhani et 
al. [5] studied experimentally the free convection heat 
transfer in a rod bundle. Chen et al. [6] developed a 
numerical scheme for forced convective heat transfer 
in the same geometry as the present one. To the 
authors’ knowledge, no numerical studies have been 
published for three-dimensional natural convection 
in an enclosed rod bundle despite its importance in 

engineering problems such as the ones mentioned 
above. This study is the first that simulates three- 
dimensional buoyant enclosure flow in a closed, multi- 
connected space such as the vertical bundle considered 
in the present study. 

In order to simulate natural convection conditions, 
modifications are made to the computational scheme 
of Chen ef al: [6] developed to study longitudinal or 
axial forced convective flow in a rod bundle. Instead 
of the Chorin scheme [7] adopted by Chen et al. in 
their numerical scheme for parabolic problems [6] and 
shown to be unsuitable for solving elliptic natural 
convection problems [8], the SIMPLE algorithm [9] 
is employed for the pressure-correction part of the 
scheme in solving the resulting finite difference 
approximations to the transformed elliptic governing 
equations. The numerical solutions are obtained in 
boundary-fitted coordinates similar to that adopted 
in ref. [6]. 

The purpose of the present paper is to study the 
effects of three-dimensional buoyant enclosure flow in 
an enclosed rod bundle when a uniform heat flux is 
applied to the rod surfaces while the enclosure wall is 
maintained at a constant temperature and the top and 
bottom ends are insulated. Results are presented for 
Rayleigh numbers up to lo8 and a Prandtl number of 
0.7. Flow fields, isotherm patterns, local and average 
boundary temperatures as well as heat transfer 
coefficients obtained exhibit distinct differences from 
the results for a rod bundle with the rod surfaces and 
the enclosure wall being isothermal but at different 
temperatures [lo]. This indicates significant influences 
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NOMENCLATURE 

a positive coefficient prescribing the linear 
transformation in the axial (:) direction. 
d:/d[ = l/u 
specific heat at constant pressure 
distance between two adjacent rods 
aspect ratio. 8/L’ 
gravitational acceleration 
Grashof number. g/l,-L”q;,/(v’k) 
dimensionless specific cnthalpy. V/l& 
enclosure height 
aspect ratio, H’/L’ 
thermal conductivity 
half enclosure (flat-to-flat) width 
Nusselt number. q;L’/(T’- TJk’ 
dimensionless pressure, (p’-p:)/pr,V[, 
Prandtl number. V/Z,- 
heat flux 
constant heat flux across the rod surfaces 
dimensionless heat flux, q’Pr/p’&V;, 
Rayleigh number, Gr PI 
time 
dimensionless time, I’ V’JL’ 
temperature 
dimensionless temperature. 
(T’- T;)k/(q;,L’) 

u, L>, IV dimensionless velocities scaled by Vi 
VA reference velocity, v/L’ 
V ZD velocity projection on a vertical or 

horizontal plane 

v 7,),m;,X maximum value of V?,, 
s. !*, : dimensionless Cartesian coordinates 

scaled by L’. 

Greek symbols 
21 thermal diffusivity 
Br volumetric expansion coefficient 
51. [A ;’ coordinate transformation 

coefficients 
1’ kinematic viscosity 
<. ‘1, [ coordinates in the transformed 

geometry 
P density 
Ix shear stress tensor. 

Superscripts 
dimensional quantity 
variable in the transformed coordinates 
averged quantity. 

Subscripts 
C cold enclosure 
h hot rod 
0 reference state 
RI Boundary of Rod I or the central rod 
R2 Boundary of Rod 2 or the outer rod 
S static value 
I. 2.3 reference to ;, 11 and < coordinates 
<, TV, <, f first partial derivatives. 

1 

of boundary conditions on heat transfer and fluid flow 
in this geometry. 

GOVERNING EQUATIONS AND NUMERICAL 
PROCEDURE 

The geometry of the problem is schematically 
shown in Fig. 1, where seven hot vertical rods are 
enclosed in a cold vertical hexagonal enclosure filled 
with fluid. The hot rod surfaces are subject to a uni- 
form heat flux qb while the cold enclosure wall is 
maintained at a constant temperature T;. The top 
and bottom boundaries of the enclosure are assumed 
adiabatic. The ratio of the height H’ to the half-width 
L’ of the enclosure (H = H’/L’) is chosen as unity. 
The ratio of rod radius R’ to L’ (R = R’/L’) is taken 
as 3/l 1, and that of the gap d’ between two rods to 
L’ (d = S/L’) 1.9/l I, according to the data in ref. 6 
which is based on an experimental assembly. Due 
to the symmetrical nature of the problem, only one 
twelfth of the assembly, i.e. the domain between sym- 
metry planes O-A and O-B, is utilized for the solution 
of the three-dimensional, steady-state natural con- 
vection problem. 

For the present geometry, a numerically generated, 
boundary-fitted coordinate system is adopted based 
on the curvilinear coordinate transformation algo- 
rithm of Thompson [I I]. The coordinate system 
allows the relevant boundary conditions to be rep- 
resented accurately without resorting to otherwise 
unavoidable interpolations. It is generated by solving 
a system of elliptic partial differential equations given 
as follows : 

cm;; - 2/l.Y;, + )‘.Y,r,l = -JiJs;P(5,q) +-yqQ(5, ~11 (1) 

Cl?‘,=; - 2/Y~‘,=,, + j'J'q,, = -J:h~;f’(;. ,I) +ev,,Q(t, ~11 (2) 

where the transformation coefficients and Jacobian 
are 

ct = xf +y;, y = .Y;t +y:, 

p = .Y& +y; y,,, J,> = .Yiv,,-.Yly;. (3) 

The functions P and Q in equations (I) and (2) are 
coordinate control functions that may be used to 
cause the coordinate lines to concentrate in certain 
parts of the computational domain. With the existing 
numerical code [6], a grid system composed of (x,J~) 
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FIG. I. Flow geometry and computational domain. 

values corresponding to discrete values of 5 and q is 
generated, with all boundary lines, solid or symmetri- 
cal. being specified on either constant-5 and/or con- 
stant-q lines, as shown in Fig. 2. The third (axial) 

Table I. Espressions for coefficients in the generic trans- 
formed equation, equation (4) 

9 b” C+ e+ S* 

coordinate is simply transformed as d:/d< = l/n 
where u can be a constant or variable depending on 
whether or not the grid spacing in physical coordinate 
: is chosen to be uniform. 

The transformed, dimensionless governing equa- 
tions, i.e. the continuity, .Y-, J- and :-momentum. and 
energy equations, are written in the following generic 
form : 

in which 4 represents the transport variable; the 
coefficients and source temls h”, c’~, ~8’ and 9 are 
given in Table I. 

In the generic equation, S,. S,, and .S; represent the 
two control volume surfaces of constant 5. q and < 
respectively; dV is the volume element bounded by 
these surfaces. A Grashof number based on the half 
width of the enclosure (L’) is defined as Gr = 
,~/JL’“&/(r’k). Other symbols have their usual physi- 
cal meanings. The equation of state is that of a perfect 

Transformed Plane 

A B 

FIG. 2. Grid systems in the physical and transformed planes. 
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gas which in dimensionless terms is T = h. The Prandtl 
number is fixed at 0.7. The variables with the ‘-’ 
symbol represent variables in the transformed region. 
Their relationships with the variables in the physical 
region (those without the ‘-’ symbol) are given in 
the following matrix equation with heat flux q as an 
example : 

In the matrix equation, subscripts 1, 2, 3 represent 
either x-, y-, I- or t-. q-. c-directions. Substituting 
[q ,. yZ, q3J in equation 5 with [u, v, MV] we have relation- 
ships for velocities, or with [C, ,, Gil, C,,] for the terms 
of the viscous stress tensor (i = I for x-, i = 2 for y- 
and i = 3 for z-momentum equations). The heat flux 
q is related to temperature T through Fourier’s law 

i,;] -;[j ; J.1 [;I. (6) 

Except for the buoyancy terms expressed with the 
Boussinesq approximation in the momentum equa- 
tions, the governing equations are similar to those 
presented in ref. [6]. in which other details can be found. 

The rod boundaries and enclosure walls including 
the top and bottom ends are modelled as no-slip sur- 
faces with vanishing velocities. A constant heat flux 
q,, is assigned to all rod surfaces while zero heat flux 
(q = 0) is assumed at the top and bottom boundaries. 
The uniform temperature on the cold enclosure wall 
has the value of 0 from the definition of the dimen- 
sionless temperature. For the symmetrical boundaries 
O-A and O-B (Fig. I), the concept of mirror image 
reflection [I21 is utilized that extends the com- 
putational domain one grid beyond the symmetry 
lines. The application of the concept to the present 
case results in the following relationships [lo] : 

(~2,)w = (V*D)E; 0,+0, = (2n+ l)n+2& (7) 

In the above equation, V20 [ = (u’+ v*) “‘1 is the pro- 
jection of the velocity vector on a horizontal (x-y) 
plane; 0 is the angle of k’,, with the positive x-axis ; 
n is any integer ; and (b is the angle of a symmetry line 
measured from the negative y-axis, thus 4 = 0 for the 
line O-A in Fig. I and 4 = n/6 for the line O-B. The 
subscripts E and W denote grid points that are mirror 
images of each other to the EAST and WEST respec- 
tively of the symmetry line. Equation (7) gives the 
symmetry condition for u and u. The symmetry con- 
dition for the other variables cf’s) is simply, fw =fp 

The equations for the finite difference approxi- 
mations to the integral equations, equation (4). are 
derived with a grid system that in three dimensions 
staggers the grid point for temperature, pressure and 
density a half-grid spacing away from the grid point 
for the velocity components, One of the advantages 

of the grid system is that no boundary condition is 
needed for pressure. The SIMPLE algorithm [9] is 
utilized for the pressure and velocity corrections that 
link the continuity equation directly with the momen- 
tum equations. The resulting pressure-correction 
equation is similar to that derived for solving the 
problem of natural convection about a vertical square 
rod placed in a cylindrical enclosure [ 131. Solutions of 
the finite-difference equations are carried out iter- 
atively with the SOR scheme. The iteration is con- 
tinued until for each grid point or control volume, 
the relative changes per iteration step for variables 
including the velocity components, temperature and 
pressure are less than IO-’ and the mass residual is 
less than IO-“. Relaxation factors are chosen between 
0.4 and 1.5 depending on the Rayleigh number. For 
all Rayleigh numbers, a grid distribution of 
19 x 25 x I5 is adopted based on the analysis of accu- 
racy and the grid-spacing-effect for a similar scheme 
[8]. In order to better satisfy the top and bottom 
boundary conditions, a non-uniform grid distribution 
along the z- or C-direction, formulated as Azi+ , = cAz, 
(c = constant), is chosen such that the grid points 
are doubly concentrated near the top and bottom 
boundaries than around the mid-height; this makes 
the grid spacing near the boundaries equivalent to 
that of a system of 21 uniform grid points along the 
vertical direction. The code is also verified by ex- 
amining the total energy balance, i.e. the difference 
between the total heat fluxes from the hot rods and 
that across the cold enclosure. This difference gen- 
erally increases as the Rayleigh number is increased, 
with the maximum being 2.8% in the range of Ray- 
leigh numbers considered in the present study. A typi- 
cal run on an IBM 3090 serial system required about 
90 CPU minutes. 

RESULTS AND DISCUSSION 

Flow fields and temperalure distributions 
Numerical results have been obtained for Rayleigh 

numbers ranging from IO2 to 10’. This range includes 
different convection intensities of pseudo-conduction, 
transitional convection and boundary-layer regions. 

Figure 3 shows isotherms for Ra = IO2 on three 
horizontal planes at axial levels z = O.lH, z = 0.5H 
and z = 0.9H respectively. Temperature is normalized 
such that it has the value of unity where the maximum 
temperature in the three-dimensional domain occurs, 
and the value of zero at the cold enclosure wall which 
is represented by line A-B in a horizontal plane. Nine 
isotherms are shown ranging from 0.1 to 0.9 with the 
increment being 0.1. It should be noted that unlike 
the case of isothermal boundary conditions, isotherms 
obtained do not coincide with the rod boundaries; 
they start or end on these surfaces. At this low Ray- 
leigh number, the effect of convection is clearly insig- 
nificant and the temperature distributions in the three 
planes are indistinguishably similar to each other and 
almost identical to that of pure conduction. This state 
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FIG. 3. Isotherms at selected lower, middle and upper horizontal planes for Ra = IO’. 

is referred to as pseudo-conduction. Two major 
differences from the case of isothermal boundary con- 
ditions can be observed; first, there is no thermally- 
stagnant ‘hot region’ existing between the central and 
outer rods where heat transfer is minimum ; second, 
there is a ‘cold region’ between the outer rod and the 
enclosure wall where temperatures are between 0.0 
and 0.1. These are natural consequences of the 
uniform-heat-flux boundary condition on the rod sur- 
faces. This pseudo-conduction state remains until the 
Rayleigh number is increased above about 10’ and, 
as will be discussed later, disappears when natural 
convection is developed at higher Rayleigh numbers. 

Shown in Figs. 4-6 are velocity fields and isotherms 
for Ra = IO’ at three axial levels and two symmetry 

- 85.54 

planes. A’-A and B’-B respectively. The cold surface 
is represented by the right vertical side in vertical 
planes. The results shown in Figs. 4-6 present the case 
in which natural convection is fairly developed but 
boundary layer flow is not yet realized. In plane B’-B 
as shown in Fig. 4, the velocity field looks similar to 
that in the case of isothermal boundary conditions; it 
is a circulating flow driven by an ascending flow near 
the central hot-rod boundary (on the left side) and a 
descending flow near the cold enclosure wall (on the 
right side), with the cold fluid down from the cold 
wall flowing toward the central hot-rod boundary in 
the bottom-end region, and vice versa in the top-end 
region. The isotherm pattern obtained in this study, 
however, is different from the case of isothermal 

FIG. 4. Velocities and isotherms at the vertical symmetry plane B’-B for Ra = IO’: VzD,mnr = 85.54. 
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-) 50.46 

FIG. 5. Velocities and isotherms at the vertical symmetry plane A’-A for Ru = IO': V2D,mrl = 50.46. 

boundary conditions in that some of the isotherms 
start or end on the hot rod surfaces; and due to the 
constant-heat-flux condition, the isotherms tend to 
distribute uniformly along the rod surfaces. The 
differences are more significant in the velocity field 
and temperature distributions in plane A’-A as shown 
in Fig. 5; no upward flow can be found between the 
outer hot rod and the cold wall. The flow there is 
uniformly downward since for this moderate Rayleigh 
number the fluid region between the two surfaces is 
still cold-only one isotherm of value 0.1 appears in 
this region. The flow between the two hot rods, on the 
other hand, is uniformly upward. Four isotherms, of 
values 0.60.9 from bottom to top, appear in this 
region, which suggests the cooling down of this area 
compared to the pseudo-conduction state in which 
temperatures at all grid points in this area are above 
0.9 (Fig. 3). Figure 6(a) shows velocity fields at three 
axial levels. At the lower horizontal plane (z = O.lH), 
the cold fluid down from the cold wall A-B flows 
toward the ‘hot region’ between the central and the 
outer hot rods to be heated and then to flow upward. 
The corresponding isotherm plot in Fig. 6(b) shows 
that this flow cools down the hot region. At the upper 
horizontal plane (z = 0.9H), on the other hand, the 
fluid from the hot region flows toward the cold wall 
to be cooled and then to flow downward in the axial or 
vertical direction in completing the main circulation. 
Due to the heating effect of the hot fluid, the hot 
region spreads toward the cold enclosure wall; the 
‘cold region’ that exists between the outer rod and the 
cold wall for low Rayleigh numbers (Fig. 3) dis- 
appears. At the middle plane (z = OSH), since the 
flow is mainly along the axial or vertical direction, the 
velocities in the horizontal plane are very small. It is 
interesting to notice that in this plane, velocities near 

the ‘hot region’ and those near the cold wall are 
toward each other because of the ‘heating’ effect of 
the outer hot rod. This flow structure is similar to that 
obtained under isothermal heating conditions. The 
isotherm plots however present differences between 
the two cases. In the case of isothermal boundary 
conditions, since temperatures at the rod boundaries 
are fixed at the value of I .O, nine isotherms ranging 
0.14.9 always appear in every horizontal plane, 
although the development of natural convection 
affects their distributions. In the case of mixed boun- 
dary conditions, on the other hand, fewer isotherms 
appear in the lower plane than in the upper plane as 
a result of developed natural convection. In the plane 
z = 0. I H. for example, only five isotherms of values 
0.1-0.5 appear compared to nine (0.14.9) in the plane 
z = 0.9H. This indicates that thermal stratification 
with temperatures varying from low to high along the 
vertical direction is more likely to be developed in the 
case of mixed boundary conditions than in the case 
of isothermal boundary conditions. 

Figures 7-9 show velocity fields and isotherms for 
Ra = IO’. This is the case in which natural convection 
is developed to such extent that boundary layer flows 
become dominant. This is evidently shown in Fig. 7 
by the distributions of velocities and isotherms near 
the cold wall and the hot rod surface. The outer hot 
rod, i.e. the rod between the central rod and the enclo- 
sure wall, affects this circulating flow (Fig. 7) such 
that weak secondary flows appear in the core region 
which otherwise would have been more or less stag- 
nant. These secondary flows are basically the same as 
those observed in the case of isothermal boundary 
conditions ; their vertical positions shift downward as 
the Rayleigh number is further increased. An obvious 
thermal stratification develops from the top boundary 
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FIG. 6. (a) Velocities at selected lower, middle and upper horizontal planes for Ra = IO’ : VZD,mu = 85.54. 
(b) Isotherms at selected lower, middle and upper horizontal planes; Ra = IO’. 

toward the lower part of the enclosure. Figure 8 
demonstrates that even in the narrow gap between the 
outer hot rod and the cold wall, boundary layer flows 
are developing, and eight isotherms, 0.1-0.8, appear 
in this region compared to only one isotherm (of a 
value of 0.1) observed for Ra = 10’ shown in Fig. 5. 
Unlike the case of Ra = IO’, since the temperature is 
significantly increased on the portion of the outer rod 
boundary that faces the cold enclosure wall, there 
is a weak upward flow developed along the surface, 
indicative of a circulating flow in this narrow channel. 
It is also observed that at higher Rayleigh numbers 
this circulating flow becomes stronger and even causes 
‘temperature inversion’ in this area. Six isotherms 
(040.9) appear in the ‘hot region’ between the two 
hot rods, suggesting further cooling down of the 

region by the stronger flush of cold fluid from the cold 
wall. Figure 9 shows velocity fields and isotherms at 
three axial levels. The isotherms in the vicinities of the 
central and outer rod surfaces take shapes that are 
close to concentric circles, suggesting boundary tem- 
perature profiles that mainly change along the vertical 
direction. Almost no isotherm appears in the ‘core 
region’ away from the solid boundaries. 

Boundary femperufures and hear transfer coeficienls 
Although the flow fields for the mixed boundary 

conditions look qualitatively similar to those for the 
isothermal boundary conditions, there are distinct 
differences in the heat transfer characteristics for the 
two cases. In the case of isothermal boundary con- 
ditions, the practical and engineering interest is on 
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- 431.6 

FIG. 7. Velocities and isotherms at the vertical symmetry plane B’-B for Ra = IO': VZD,mux = 431.6. 

the heat fluxes across the rod and enclosure surfaces. 
These heat fluxes can be estimated from isotherm 
plots since the local heat flux vector is normal to the 
isotherms, and inversely proportional to the spacing 
between the isotherms. This is also applicable to the 
isothermal enclosure boundary in the case of mixed 
boundary conditions. As can be observed in Figs. 3, 
6(b) and 9(b), increasing the Rayleigh number shifts 
the maximum heat flux on the cold wall toward the 
top end-usually at point B (z = 0.9H) where the hot 
fluid coming from the ‘hot region’ impinges on the 
cold wall (Fig. 9(a), z = 0.9H). This situation is simi- 

lar to that observed in the case of isothermal boundary 
conditions. For the rod surfaces in the case of mixed 
boundary conditions, however, instead of the heat 
fluxes which are always constant by definition, the 
surface temperatures are the ones that are of most 
interest. The Nusselt number is defined in a con- 
ventional form as 

4x 
N” = (j”- y-,‘),y (8) 

It is simply the inverse of the dimensionless tempera- 

FIG. 8. Velocities and isotherms at the vertical symmetry plane A-A for Ra = 10': Vzo.mal = 444.2. 
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FIG. 9. (a) Velocities at selected lower, middle and upper horizontal planes for Ra = IO’: V2D,mar = 429.9 
(b) Isotherms at selected lower, middle and upper horizontal planes; Ro = IO’. 

ture. The variations of local or average Nusselt num- 
bers, therefore, can be easily deduced from local or 
average boundary temperatures. The average boun- 
dary temperature on the central rod Fr+, is obtained by 
integrating the local boundary temperature TR,(& c) 
over the rod boundary as follows : 

The boundary temperature Tal(<,[) in equation (9) 
is obtained by applying Fourier’s law in transformed 
coordinates on the rod boundary as 

and A is the area of the central rod which can be 
calculated either from the physical dimensions or, in 
more general case, from the following integration over 
the rod surface : 

A= (11) 

The local and average boundary temperature for the 
outer rod, T,,, and TrrR2. are determined in a similar 
way. 

Figure 10 presents boundary temperature profiles at 
mid-height (z = OSH) along the outer rod surface, 
C-E-E’-C’ as shown in Fig. 2, for various Rayleigh 
numbers that range from the pseudo-conduction to 
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FG. IO. Temperature proliles at : = 0.5H on the outer rod FIG. I I. Temperature profiles along two vertical lines on the 
boundary (along CEE’C’ as shown in Fig. 2). outer rod boundary (E and E’ as shown in Fig. 2). 

boundary-layer regions. Their variations with the 
Raylcigh number arc typical in revealing the effect of 
convective flow on the rod boundary temperatures. 
The curve for Ru = IO’ corresponds to the pseudo- 
conduction state shown in Fig. 3; the temperature 
distribution at this Rayleigh number therefore rep- 
resents for practical purposes all results for Ro < IO’. 
The temperature for Ra = IO is lower than that for 
the pseudo-conduction result on the portion C’-E’ 
which faces the hot central rod, but remains 
unchanged on the portion C-E which faces the cold 
wall. This indicates that surfaces away from the cold 
wall may cool down faster than surfaces close to it. 
This interesting phenomenon occurs because the rela- 
tively strong upward flow developed in the&hot region’ 
between the two hot rods (Fig. 5) siphons the cold 
fluid down from the cold wall into this region (Fig. 
6(a), : = O.lH). which results in the cooling down 
effect. This ‘siphon effect’ is distinct at moderate Ray- 
leigh numbers; only at very high Rayleigh numbers 
does the upward flow develop along portions of the 
rod surface away from the ‘hot region’. as previously 
discussed. Increasing the Rayleigh number generally 
reduces the variation in boundary temperature until 
Ru = IO’ is reached at which boundary layer flows 
and thermal stratification are well established. Further 
increase in the Rayleigh number only lowers the value 
of the nearly uniform temperature distribution, indi- 
cating an established profile that varies only in the 
vertical direction. 

Figure I I is aimed at providing additional con- 
firmation of the stratification profile. The figure shows 
boundary temperature profiles along two vertical lines 
on the outer rod surface E and E’, respectively, shown 
in Fig. 2 as points. As the Rayleigh number is 
increased, the boundary temperature profiles along 
the two vertical lines approach each other; for 
Rn = IO”, there exists an appreciable difference in the 
lower quarter section of the enclosure. This difference, 

Vertical Height Z 

however, is significantly reduced when compared with 
those obtained for Ra = IO and Ra = IOh. 

Figure I2 shows the average boundary tem- 
peratures for the central and outer rods, TT,,, and rRH? 
respectively. They remain almost unchanged until the 
Rayleigh number is increased above approximately 
IO’. It is therefore reasonable to define the pseudo- 
conduction regime to include Rayleigh numbers less 
than 102. For higher Rayleigh numbers, both Fr+, and 
FR,z decrease with increasing Rayleigh number. It is 
interesting to find that the curves for TR, and Tk,z 
approach the straight line of - l/4 slope. drawn in the 
figure as a reference, and at high Rayleigh numbers 
corresponding to boundary layer flows, the curves 
almost overlap with each other. This suggests that in 
the boundary layer region the Nusselt and Rayleigh 
numbers can be well correlated with NLI = cRa”“, an 
expression derived theoretically by Gill [ 141 and later 
improved upon by Bejan [I 51 for boundary-layer 

1E 8 
Ra 

FIG. 12. Average temperatures on the central rod (Rod I) 
and the outer rod (Rod 2) surfaces. 
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rod to that at the central rod surfaces. 
outer 

enclosure flow with thermal stratification in a vertical 
rectangular cavity. Figure 13 provides additional evi- 
dence that as the Rayleigh number increases the ratio 
of TR2 to TK, asymptotically as well as monotonically 
approaches unity, with the value at Ra = 10” being 
0.97. This phenomenon can be explained with the 
thermal stratification at high Rayleigh numbers at 
which boundary layer flows arc dominant. Under this 
condition, the interaction of a rod surface with sur- 
rounding fluid is equivalent to a situation in which 
the surface is placed into a thermally stratified pool ; 
the position of the surface is, therefore, not important. 
It should be noted that relative positions between the 
rods and the other geometric factors do affect the axial 
temperature profile of the stratification and conse- 
quently the axial profile of boundary temperatures on 
the rod surfaces. A similar axial profile with little 
variation horizontally on the vertical rod surfaces, 
however, will be obtained as long as the state of strati- 
fication is reached. A similar phenomenon has been 
observed in the case of isothermal boundary con- 
ditions in which different rods tend to assume the 
same heat flux profile in the boundary-layer regime. 
Since Keyhani et al. [S] have reported experimental 
results showing the same tendency for a rod bundle 
of different rod arrangement and enclosure shape, it 
would be reasonable to expect that this phenomenon 
is independent of both the boundary conditions and 
the geometric factors such as the enclosure shape. 
This independence is fundamentally the same as that 
reported on boundary-layer enclosure flows in the 
problem of natural convection induced by heat gen- 
eration in vertical porous enclosures [ 161. 

By choosing FrJFR, > 0.9 as the criterion to deter- 
mine the Rayleigh number regions, we have Ra > IO6 
for the boundary-layer region. The region between 
the pseudo-conduction and the boundary-layer 
regions, i.e. IO3 < Ra < 5 x IO”, is therefore defined 
as the transitional convection region. 

CONCLUSIONS 

Numerical analyses have been performed in 
boundary-fitted coordinates for the problem of threc- 
dimensional buoyant enclosure Row in a hot seven- 
pin rod bundle subject to uniform heat flux and sur- 
rounded by an isothermal, cold hexagonal enclosure, 
for Raylcigh numbers up to IO’ and a Prandtl number 
of 0.7. Flow patterns, boundary temperature profiles 
or heat transfer coefficients have been obtained and 
presented. Comparisons have also been made of the 
present results for the mixed boundary conditions 
with those for the isothermal boundary conditions to 
examine the effects of boundary conditions. 

Although the flow fields, isotherm distributions 
and heat transfer characteristics exhibit significant 
differences from the case of isothermal boundary 
conditions, the flow patterns in this geometry can be 
classified, in a similar way as in the case of isothermal 
boundary conditions, into three Rayleigh number 
regions. Thcsc include (a) a pseudo-conduction region 
in which heat is carried away almost solely by pure 
conduction; (b) a boundary-layer region in which 
thermal stratification causes boundary temperature 
profiles on the hot rods to vary only along the vertical 
direction: and (c) a transitional convection region 
between the above-mentioned two, in which con- 
vective flow is strong enough to result in apparent 
deviation of rod boundary temperatures from the 
pseudo-conduction state and the ‘siphon effect’, but 
not to cause thermal stratification. The correspond- 
ing Rayleigh number ranges for these regions 
are: Ra ,< IO’ for the pseudo-conduction region. 
IO’ < Ra < 5 x IO” for the transitional convection 
region and Ro 2 5 x IOh for the boundary-layer 
region. 

The flow is generally driven by a downward flow 
along the cold enclosure wall and an upward flow in 
the ‘hot region’ between the central and outer rods. 
Siphoned by this strong upward flow, the cold fluid 
down from the cold wall flows horizontally at the 
bottom region toward the ‘hot region’, by-passing 
the outer rod surface. and turns its direction to flow 
upward when it reaches the ‘hot region’. Only when 
the Rayleigh number is high enough to cause boun- 
dary layer flow, dots an upward flow develop along 
the portions of the outer-rod boundary that are away 
from the ‘hot region’. This ‘siphon effect’ observed at 
moderate Rayleigh numbers is the cause of an inter- 
esting phenomenon that shows that surfaces away 
from the cold wall cool down faster than surfaces 
close to it. 

In the boundary-layer regime, as a result of thermal 
stratification that occupies an increasingly large ‘core 
region’ as the Rayleigh number increases, the rods at 
different positions tend to achieve nearly the same 
average boundary temperature or consequently the 
same overall heat transfer coefficient. This agrees with 
experimental observations for a rod bundle of differ- 
ent configuration [S]. It is concluded that in this 
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regime, the Nusselt and Rayleigh numbers can be well 
correlated with Nu = cRa’14, which is in the same 
form as was theoretically derived for boundary-layer 
enclosure flows in a vertical rectangular cavity. 
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